

International Journal of Medical Science and Innovative Research (IJMSIR)

IJMSIR: A Medical Publication Hub Available Online at: www.ijmsir.com

Volume – 4, Issue – 1, February - 2019, Page No. : 124 - 127

Histopathological Evaluation of Meningiomas

¹Mohammad Khushnood, ²Priya Vijaykumar Gameti, ³Nitin Chaudhary, ⁴Mala Jain

¹Senior Demonstrator, Government Medical College, Dungarpur, Rajasthan

²Assistant Professor, Government Medical College, Dungarpur, Rajasthan

³Department of Cytology, AIIMS Jodhpur, Rajasthan

⁴Assistant Professor, Government Medical College, Dungarpur, Rajasthan

Corresponding Author: Priya Vijaykumar Gameti, Assistant Professor, Government Medical College, Dungarpur,

Rajasthan

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Introduction

Meningiomas are the most frequent primary tumors of the central nervous system (CNS) constituting about 28–30% of primary Central Nervous System Tumours (1,2)They originate from the arachnoidal cap cell, a meningothelial cell in the arachnoidal membrane. Meningiomas account for 15% of all intracranial tumors and usually occur in fourth to sixth decades of life with mean age of 45 years at diagnosis(3)According to site meningiomas are located at parasaggital, convexity, sphenoid ridge, suprasellar, posterior fossa, olfactory groove, middle fossa, tentorial, peritorcular, lateral ventricle, foramen magnum, spinal, orbit or optic nerve sheath, few located at ectopic site. Females have meningiomas more often than males; ratio intracranial and 4:1 meningiomas.(4)While they are benign in most instances and may be cured with gross total resection; however, approximately 9-22% of patients experience recurrence and rarely are they frankly malignant leading to metastasis.(5)Known risk factors for recurrence include histological malignancy grade, subtotal resection, young age, specific subtypes, brain infiltration, and high proliferative rate.(6)

On gross examination, typical meningioma is lobulated or single, solid mass that is widely attached to the dura mater. On sectioning, meningioma is soft and grayish, sometimes show rubbery consistency due to colonization. Calcification is often present and yellow foci are seen because of the accumulation of lipid within tumor cells. Sometimes grayish black pigmentation is seen because of the colonization of the hyperplastic leptomeningeal melanocytes.(7) Meningiomas (benign) are recognised by their histologic subtype and lack of anaplastic features.Grade II meningiomas (atypical) are defined by one or more of the following four criteria: 1) chordoid or clear cell histologic subtype, 2) four to 19 mitoses per ten high-power field (HPFs), 3) brain infiltration, and 4) three or more of the following five histologic features: small cell change, increased cellularity, prominent nucleoli, sheet-like growth, or necrosis. Grade III meningiomas (anaplastic/malignant) are defined by rhabdoid or papillary subtypes, a histological picture of frank malignancy resembling that of carcinomas, melanomas, or high grade sarcomas, or 20 or more mitosis per ten HPFs.(8)

The aim of the study was to investigate a large number of human meningiomas, consecutively operated during a five-year period, in order to record the frequency of various subtypes and malignancy grades according to the latest WHO classification (2016) (6)

Materials And Methods

A total of 50 cases of clinically diagnosed meningioma patients admitted in the teaching hospital were studied. A detailed history was taken and only cases of clinically and radiologically suspected meningiomas which were confirmed on histology in the Department of Pathology retrogradely during the period last five were enrolled in the study. Specimens received were immediately fixed in 10% buffered formalin. All the specimens were subjected to routine processing. Routine HES (Haematoxylin-Eosin-Saffron) stained paraffin sections were reviewed without knowledge of prior grading or patient outcome. The parameters like patient's age, gender, location of tumor, microscopic appearance of tumor were studied. The tumours were classified into subtypes according to the dominate growth pattern (roughly 50% of a specimen on microscopic evaluation). The meningiomas' initial grade was recorded, and WHO classifications of 2016 were applied on the material.

Results and Observation

Table 1: Age And Gender Distribution Of Pateints

Age (in	number	Males	Females	Percentage (%)
years)				
0-10	-	-	-	-
11-20	01	=	01	02
21-30	01	-	01	02
31-40	11	04	07	22
41-50	19	05	14	38
51-60	05	03	02	10
61-70	08	02	06	16

71-80	03	01	02	06
81-90	02	-	02	04
TOTAL	50	15	35	100

Table 2: Signs And Symptoms Presented By Patients

Signs And	Number of	% of Patients
Symptoms	Patients	
	(Out Of 50)	
Headache	34	69
Vomiting	18	37
Visual Problem	13	26
Weakness	08	15
Numbness	05	10
Seizures	02	4
Hearing Loss	01	2
Ataxia	01	2

Table 3 : Incidence Of Various Histological Types of Meningioma

Type No.	Who	Number of	Percentage	
	grade	cases	of cases (%)	
		(out of 50)		
Meningothelial	Ι	19	38	
Transitional	Ι	12	24	
Fibrous	I	06	12	
Psammomatous	I	05	10	
Angiomatous	I	03	06	
Microcystic	I	01	02	
Atypical	П	01	02	
Papillary	III	01	02	
Anaplastic	II	02	04	
Total		50	100	

Discussion:

Table 4: %Wise Distribution of Cases in Different Studies According To Age

Age (in	Pratik	Maruf	Patil	Reddy	Present
years)	Desai	Raza et	P.R	et al	study
	et al	al	et al		
0-10	-	-	1.1	-	-
11-20	2	5.8	2.3	-	02
21-30	10	1.9	3.4	5.2	02
31-40	28	19.4	32.1	15.7	22
41-50	28	35	33.3	31.5	38
51-60	22	14.6	11.4	26.3	10
61-70	10	16.5	12.6	10.5	16
71-80		4.9	3.4	10.5	06
81-90		1.9	-	-	04

The present study showed maximum cases in the age group of 41-50 years which is comparable to most of the studies by different authors. Variations in some data between studies can be attributed to difference in study population.

Table 5:%Wise Distribution Of Signs And Symptoms Presented By Patients In Different Studies

	AUTHO			
Signs And	Maruf Raza	Nasrin	Present	
Symptoms	Et Al	Samadi	Study	
		Et Al	(%)	
Headache	53.3	46.4	69	
Vomiting	14.6		37	
Visual Problem	4.9	27.9	26	
Weakness	5.8	24	15	
Numbness	3.9	-	10	
Seizures	10.7	13.3	4	
Hearing Loss	1.9	4.3	2	
Ataxia	-	5.2	2	
Others				

Concordant observations are seen when signs and symptoms of patients with meningiomas are compared with studies by different authors with most of patients complaining of long standing head ache with vomiting.

Table 6: %wise Distribution of patient by histological subtype in different studies

Types		AUTHORS					
of meningiomas	Pratik	Patil P.R	Maruf	Reddy	Smita	Nasrin	Present
	Desai	et al	Raza et	et al	et al	Samadi et	study
	et al		al			al	
	64	43.68	61.1	42.1	37	65.1	38
Meningothelial							
Mennigothenai							
Transitional	-	24.13	15.5	10.5	10	17.2	24
Tunstrona		21.13	13.3	10.5	10	17.2	2.
Fibrous	6	5.75	4.9	5.2	16	9.2	12
Psammomatous	10	10.34	4.9	26.3	19	0.8	10
Angiomatous	8	-	4.9	5.2	-	1.3	06
Microcystic	2	2.30	-	-	08	0.4	02
	_						-
Atypical	6	2.30	4.9	5.2		-	02
Clear cell	2	2.30	0.9	_	04	0.8	_
			0.9		04	0.6	-
Papillary	2	1.15	-	5.2	-	0.4	02
	ļ	2.45					0.4
Anaplastic	-	3.45	-	-	-	-	04
Others	-	6.9	2.8		06	4.8	
Others		0.9	2.0		00	4.0	

On comparing frequency of subtypes of meningiomas maximum number of cases were found to be of meningiothelial type followed by transitional, fibrous and other subtypes which are similar and comparable to other studies.

Conclusion: Meningiomas are common intracranial tumors occuring more frequently in females and adults are more affected then their elderly counterparts. Patients most commonly present with headache of longer duration and vomiting. The cyto and histopathological criterias contribute to a global classification system as desired by the WHO which should be applicable in every

neuropathological set up especially where genetic screening is not accessible.

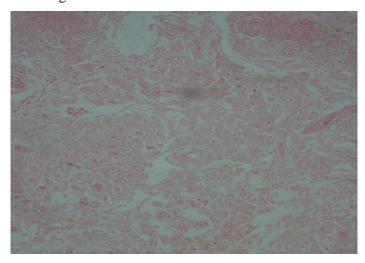


Diagram 1: GRADE II Meningioma H&E stain 10x view

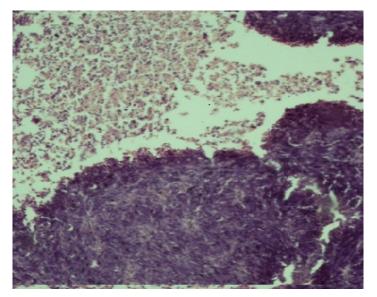


Diagram 2: GRADE III Meningioma H&E stain 20x view

References

- Harter Pn, Braun Y, Plate Kh. Classification Of Meningiomas—Advances And Controversies. Chin Clin Oncol 2017;6(Suppl 1):S2. Doi: 10.21037/Cco.2017.05.02
- Patil P.R., Sondankar D, Clinicopathological Study Of Meningioma: *Int J Med Res Rev* 2016;4(4):592-601. Doi:10.17511/Ijmrr.2016.i04.20.

- Maruf Raza Akm, Ahmed F, Ahmed Z, Islam R, Khatun T. Histomorphological Spectrum Of Meningioma With Variants And Grading. Journal Of Scientific Achievements, May2017; 2 (5): 18-22
- 4. Histopathological Study Of Meningioma In Civil Hospital, Ahmedabad Smita Shah, R. N. Gonsai, Rinku Makwana Ijerr Vol 05 Issue 0
- Meningioma: A Clinicopathological Evaluation Nasrin Samadi & Seyed Ali Ahmadi Malaysian Journal Of Medical Sciences, Vol. 14, No. 1, January 2007 (46-52
- The Histopathological Spectrum Of Human Meningiomas Thomas Backer-Grøndahl1, Bjørnar H Moen1, Sverre H Torp1,2Int J Clin Exp Pathol 2012;5(3):231-242
- Desai Pb, Patel D. Histopathological Study Of Meningioma. Int J Med Sci Public Health 2016;5: 327-330
- 8. Histopathological Spectrum Of Meningioma And Its Variants Rajashekar Reddy1, Konthampraveen 2, Ranveer Singh3Asian Pac. J. Health Sci., 2016; 3(1):151-155