

International Journal of Medical Science and Innovative Research (IJMSIR)

IJMSIR : A Medical Publication Hub

Available Online at: www.ijmsir.com

Volume - 5, Issue - 1, February - 2020, Page No. : 188 - 200

Profile of Adverse Drug Reactions among Multi Drug Resistant Tuberculosis and Extensively Drug Resistant Tuberculosis Patients and To Assess Its Severity at Tertiary Care Centre of North India.

<sup>1</sup>Yadav Prashant, MD, Assistant Professor, Department of Respiratory Medicine, UP University of Medical Sciences, Saifai, Etawah, UP.

<sup>2</sup>Kumar Adesh, MD, Professor, Department of Respiratory Medicine, UP University of Medical Sciences, Saifai, Etawah, UP.

<sup>3</sup>Gupta Kumar Ashish, MD, Associate Professor, Department of Respiratory Medicine, UP University of Medical Sciences, Saifai, Etawah, UP.

<sup>4</sup>Gautam Kumar Aditya, Assistant Professor, Department of Respiratory Medicine, UP University of Medical Sciences, Saifai, Etawah, UP.

<sup>5</sup>Singh Virender, Pharmacovigilance Associate, Department of Pharmacology, UP University of Medical Sciences, Saifai, Etawah, UP.

**Corresponding Author:** Kumar Adesh, MD, Professor, Department of Respiratory Medicine, UP University of Medical Sciences, Saifai, Etawah, UP.

**Citation this Article:** Yadav Prashant, Kumar Adesh, Gupta Kumar Ashish, Gautam Kumar Aditya, Singh Virender "Profile of Adverse Drug Reactions among Multi Drug Resistant Tuberculosis and Extensively Drug Resistant Tuberculosis Patients and To Assess Its Severity at Tertiary Care Centre of North India.", IJMSIR- February - 2020, Vol – 5, Issue -1, P. No. 188 – 200.

Type of Publication: Original Research Article

**Conflicts of Interest:** Nil

# Abstract

**Context** : Worldwide, Tuberculosis (TB) is one of the top 10 causes of death, and the leading cause from a single infectious agent. Globally in 2017, WHO estimated incidence of Rifampicin Resistant (RR) and multi drug resistant tuberculosis (MDR-TB) in India is estimated to be around 147000. This translates to around 11 patients per 100 000 population annually as per the Global TB Report, 2017 [1].

Aim and Objective: To study the Profile of AdverseDrugReactions among Multi DrugResistantTuberculosisAndExtensivelyDrugResistant

Tuberculosis Patients and To Assess Its Severity At Tertiary Care Centre Of North India.

**Methods & Material:** This study was a hospital based Prospective observational study in which 644 patients were taken over a period of February 2015 to September 2019, Data were collected from patients attending the Outpatient and Inpatient of the department of respiratory medicine fulfilling the inclusion and exclusion criteria and according to a predesigned proforma gathering clinical history, examination and investigations. Causality assessment and severity of adverse drug reaction were done as per World health organisation criteria. Standard statistical

Page 188

averages, standard deviation and mean deviation were calculated.

**Result:** We evaluated a total of 644 patients of MDR TB and extensively drug resistant tuberculosis (XDR TB) for any adverse drug reaction(ADR). Mean age of patients in our study was  $43.7 \pm 14.2$  years. Out of 644 patients, 442 (68.60%) were male and 202 (31.40%) were females. A total of 316 (49.06%) patients among 644 patients were experienced 480 adverse drug reactions (ADRs) during their treatment with mean age  $41.7 \pm 9.2$  years.

**Conclusion:** Among 480 ADRs, 57.91% of ADRs were of gastro intestinal system (most common ) followed by 9.37% ADRs of nervous system. Out of 480 ADRs, 366 (76.25%) ADRs were possible, 101 (21.04%) probable and 13 (2.71%) were certain according to causality assessment by WHO criteria. Out of 480 ADRs, 258 ADRs (53.75%) of Grade I, 174 (36.25%) of Grade II, 40 (8.33%) of Grade III and 8 (1.67%) ADRs were of Grade IV Severity. In our study there were 20 (4.16%) such cases of ADRs where permanent discontinuation of offending drugs were done .

**Keywords** : MDR TB, XDR TB, Adverse drug Reaction

**Summary :** Worldwide, Tuberculosis (TB) is one of the top 10 causes of death, and the leading cause from a single infectious agent. The treatment of MDR-TB is challenging because of prolonged duration of therapy , significant drug toxicities and adverse drug reactions (ADRs). This study was a hospital based Prospective observational study in which 644 patients were taken over a period of February 2015 to September 2019. Causality assessment and severity of adverse drug reaction were done as per World health organisation criteria. A total of 644 patients of MDR TB and XDR TB were evaluated for any adverse drug reaction. A total of 316 (49.06%) patients among 644 patients were experienced 480 adverse drug reactions (ADRs) during their treatment under DOTS-plus therapy with mean age  $41.7 \pm 9.2$  years. Among 480 ADRs, 57.91% of ADRs were of gastro intestinal system (most common) followed by 9.37% ADRs of nervous system. Out of 480 ADRs, 366 (76.25%) ADRs were possible, 101 (21.04%) probable and 13 (2.71%) were certain according to causality assessment by WHO criteria. Out of 480 ADRs, 258 ADRs (53.75%) of Grade I, 174 (36.25%) of Grade II, 40 (8.33%) of Grade III and 8(1.67%) ADRs were of Grade IV Severity. In our study there were 20 (4.16%) such cases of ADRs where permanent discontinuation of offending drugs were done.

### Introduction

Worldwide, Tuberculosis (TB) is one of the top 10 causes of death, and the leading cause from a single infectious agent. Globally in 2017, there were an estimated 10.0 million incident cases of TB (range, 9.0–11.1 million), equivalent to 133 cases (range, 120–148) per 100 000 population. India contributes around 27% of global burden of TB. There were an estimated 558 000 new cases (range, 483 000–639 000) of rifampicin resistant TB (RR-TB), of which almost half were in three countries: India (24%), China (13%) and the Russian Federation (10%). WHO estimated incidence of Rifampicin Resistant (RR) and MDR-TB in India is estimated to be around 147000. This translates to around 11 patients per 100 000 population annually as per the Global TB Report, 2017 [1].

The treatment of MDR-TB is challenging because of prolonged duration of therapy, significant drug toxicities and adverse drug reactions (ADRs). Thus disease contributes to significant morbidity and mortality which to a great extent is preventable by assuring adherence to guidelines and management of adverse drug reactions (ADRs). It is essential to monitor adverse drug effects in a systematic and timely manner. A comprehensive knowledge regarding patterns, severity, causative agents of a ADR need to be evaluated so that timely intervention can be done. ADR is one of the most important aspect to be understood by all those who used to involved in the management of tuberculosis, therefore this study was planned.

### Aim

To study the Profile of Adverse Drug Reactions among Multi Drug Resistant Tuberculosis And Extensively Drug Resistant Tuberculosis Patients and To Assess Its Severity At Tertiary Care Centre Of North India.

### Objectives

1. Identification of types and frequency of adverse drug reactions.

2. To assess causality and severity of the reported adverse drug reactions.

### Material & Methods

This study was a hospital based Prospective observational study in which 644 patients were taken over a period of February 2015 to September 2019, done at respiratory medicine department of tertiary care centre of north India. Ethical clearance was taken from the institutional ethical committee.

During study period, patients >10 years of age receiving Multi drug resistant tuberculosis and extensively drug resistant tuberculosis treatment registered in DR-TB (Drug Resistant Tuberculosis Centre) Centre of a tertiary care centre were included in the study. Those patients who did not give consent, Pregnant, less than 10 years of age, transferred out, died and default their treatment were excluded from the study. Patients with deranged Liver and Kidney function tests and Other chronic disease condition requiring any concomitant medication were excluded. Those patients who were reported ADRs and managed at peripheral centres were also excluded in the study.

The Revised National TB Control Programme (RNTCP) has launched "Directly Observed treatment Short-Course (DOTS) Plus" for management of drug resistant tuberculosis (DR-TB) in 2007 and has expanded these services to all states and Union Territories across the country in 2012. RNTCP has taken the programmatic decision that patients who have any Rifampicin resistance, should also be managed as if they are an MDR TB case as rifampicin resistance is quite rare without isoniazid resistance. Standardized treatment regimen for MDR-TB under daily DOTS-Plus includes 6-9 months Intensive Phase (IP) drug therapy & 18 months Continuation Phase (CP) drug therapy. Intensive for XDR TB is 6 to 12 months and 18 months Continuation Phase (CP) drug therapy. (Table 1)

| S/N | Multi drug Resis                      | tant Tuberculosis | Extensively Drug Resistant Tuberculosis |                    |  |  |  |
|-----|---------------------------------------|-------------------|-----------------------------------------|--------------------|--|--|--|
|     | Intensive Phase Continuation Phase In |                   | Intensive Phase                         | Continuation Phase |  |  |  |
|     | (69 month )                           | (18 months)       | (612 months)                            | (18 months)        |  |  |  |
| 1   | Kanamycin                             |                   | Capreomycin                             |                    |  |  |  |
| 2   | Levofloxacin                          | Levofloxacin      | Moxifloxacin                            | Moxifloxacin       |  |  |  |

| 3  | Ethambutol   | Ethambutol  | Linezolid                 | Linezolid                 |
|----|--------------|-------------|---------------------------|---------------------------|
| 4  | Cycloserine  | Cycloserine | High Dose Isoniazid       | High Dose Isoniazid       |
| 5  | Ethionamide  | Ethionamide | Amoxyclav                 | Amoxyclav                 |
| 6  | Pyrazinamide |             | Para Amino Salicylic Acid | Para Amino Salicylic Acid |
|    |              |             | (PAS)                     | (PAS)                     |
| 7  |              |             | Clofazimine               | Clofazimine               |
| 8. | Pyridoxine   | Pyridoxine  | Pyridoxine                | Pyridoxine                |

Drug used as per standardized weight band (16-29

kg, 30—45 kg ,46—70 kg ,  $\,>70$  kg ) of RNTCP

DOTS Plus Programme. (Table 2)

Table 2: Dosage of DRTB Drugs for Adult

| S/N | Drugs                                 | 16-29 kg    | 30—45kg        | 46—70 kg    | >70 kg      |
|-----|---------------------------------------|-------------|----------------|-------------|-------------|
| 1.  | High Dose Isoniazid (H <sup>h</sup> ) | 300mg       | 600mg          | 900mg       | 900mg       |
| 2.  | Ethmbutol                             | 400mg       | 800mg          | 1200mg      | 1600mg      |
| 3.  | Pyrazinamide                          | 750mg       | 1250mg         | 1750mg      | 2000mg      |
| 4.  | Kanamycin                             | 500mg       | 750mg          | 750mg       | 1000mg      |
| 5.  | Capreomycin                           | 500mg       | 750mg          | 750mg       | 1000mg      |
| 6   | Amikacin                              | 500mg       | 750mg          | 750mg       | 1000mg      |
| 7.  | Levofloxacin                          | 250 mg      | 750 mg         | 1000mg      | 1000mg      |
| 8.  | Moxifloxacin                          | 200mg       | 400mg          | 400mg       | 400mg       |
| 9   | Linezoloid                            | 300mg       | 600mg          | 600mg       | 600mg       |
| 10  | Amoxy clav                            | 875 /125 mg | 875 /125 mg BD | 875 /125 mg | 875 /125 mg |
|     |                                       |             |                | 2 Morning + | 2 Morning + |
|     |                                       |             |                | 1 Evening   | 1 Evening   |
| 11  | Clofazimine                           | 50mg        | 100mg          | 100mg       | 200mg       |
| 12  | Ethionamide                           | 375mg       | 500mg          | 750mg       | 1000mg      |
| 13  | Cycloserine                           | 250 mg      | 500mg          | 750mg       | 1000mg      |
| 14  | Pyridoxine                            | 50mg        | 100mg          | 100mg       | 100mg       |
| 15  | NA- PAS                               | 10gm        | 14gm           | 16gm        | 22gm        |
|     | (60% weight / volume)                 |             |                |             |             |

These MDR and XDR TB Cases require prolonged treatment using second line drugs which are highly toxic and less effective [2]. Any noxious or unintended response to a drug which occurs at doses normally used in human for the prophylaxis, diagnosed or treatment of disease or for the modification of physiological function is termed as Adverse Drug Reaction [3,4]. Data were collected according to a predesigned proforma regarding Age, Sex, Weight, Body Mass Index ( BMI) ,Co-Morbid illness such as Diabetes

 $\tilde{P}_{age}19$ 

**Special Investigation** 

Audiometry

Ophthalmoscopy

Nerve Conduction Velocity

Ultrasonography Of Abdomen

Criteria [5,6,7] (Table 3).

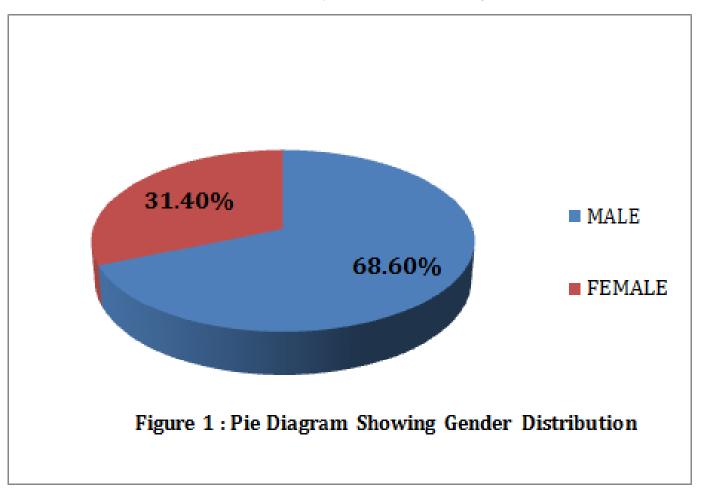
Computed Tomography Of Chest and Head

Causality Assessment and Severity of Adverse drug

reactions were done as per world health organisation

Mellitus, Hypertension, Dose and Duration Of MDR-TB and XDR TB Drugs, other medications, and ADR. Investigations such as Complete Blood Count, Liver Function Tests (LFT), Renal Function Tests (RFT), Serum Electrolyte, Electrocardiography and Random Blood Sugar, Fasting and Post Prandial Blood Sugar , Viral marker for hepatitis B (HBSAG ) and hepatitis C(HCV) and testing for human immunodeficiency virus (HIV) , Chest X Ray were recorded.

### Table 3: World Health Organisation Causality Categories


# S/N Causality Term Assessment Criteria 1 1.Event or laboratory test abnormality, with plausible time relationship to drug Certain intake Cannot be explained by disease or other drug 2. Response to withdrawal plausible (pharmacologically, pathologically) 3. Event definitive pharmacologically or phenomenologically (i.e. an objective and specific medical disorder or a recognised pharmacological phenomenon 4. Rechallenge satisfactory, if necessary 2 Probable 1.Event or laboratory test abnormality, with reasonable time relationship to drug intake 2. Unlikely to be attributed to disease or other drugs 3. Response to withdrawal clinically reasonable 4. Rechallenge not required 3 Possible 1.Event or laboratory test abnormality, with reasonable time relationship to drug intake 2. Could also be explained by disease or other drugs 3.Information on drug withdrawal may be lacking or unclear

Severity of adverse drug reactions were presented as Grade 3 Severe or medically significant but not grading ,There were 5 grades:immediately life-threatening; hospitalization or Grade 1 Mild; asymptomatic or mild symptoms; prolongation of hospitalization indicated clinical or diagnostic observations only; intervention Grade 4 Life-threatening consequences; urgent not indicated. intervention indicated. Grade 2 Moderate; minimal, local or non invasive Grade 5 Death related to adverse event . intervention indicated. Data were entered into MS-Excel sheet. Descriptive statistics was used to analyze the data. Results were

expressed as either percentage or mean  $\pm$  standard deviation (SD).

#### Results

We evaluated 644 MDR TB & XDRTB patients who were registered during the study period. There were 555 (86.18%) cases of MDR Pulmonary Tuberculosis and 30(4.65%) cases were MDR Extra Pulmonary Tuberculosis. There were 58 (9%) cases of XDR Pulmonary TB and 01 (0.15%) case of Extra Pulmonary XDR TB. Mean age of patients in our study was  $43.7 \pm 14.2$  years. Maximum patients belongs to age group 20 to 39 years. Out of 644 patients 442 (68.60%) were male and 202 (31.40%) were females. (Figure 1)

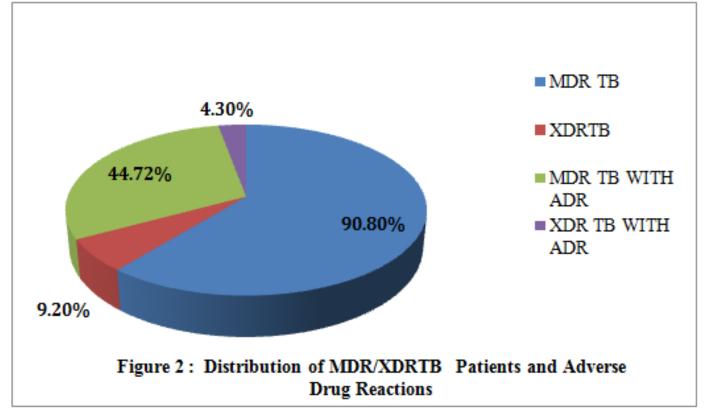


Mean body weight of study population was  $43.10\pm8.4$  kg. Maximum patients 386 (59.93%) were belong to

under nutrition as per Body Mass Index (BMI) (<18.5). (Table 4)

| Demographic Profile  | Total n=644(%)     | Cases with Adverse Drug Reaction  | Cases with Adverse Drug  |
|----------------------|--------------------|-----------------------------------|--------------------------|
|                      |                    | (MDR TB +XDR TB )288 + 28 316 (%) | Reaction (XDR TB) 28 (%) |
| Age Group (Years)    |                    |                                   |                          |
| 10-19                | 77 (11.96)         | 45 (14.24 )                       | 02(7.14)                 |
| 20-39                | 296(45.96)         | 143 (45.23)                       | 13(46.42)                |
| 40-59                | 216(33.54)         | 106 (33.54)                       | 9(32.14)                 |
| 60-89                | 55 (8.55)          | 22 (6.96)                         | 4(14.28)                 |
| Sex                  |                    |                                   |                          |
| Male                 | 442 (68.60)        | 220 (69.63)                       | 17(60.71)                |
| Female               | 202 (31.40)        | 96 (30.38)                        | 11(39.29)                |
| Weight               | 43.10 <u>+</u> 8.4 | 41.10 <u>+</u> 6.3                | 44.10 <u>+</u> 7.3       |
| Body Mass Index      |                    |                                   |                          |
| (BMI kg/m2)          |                    |                                   |                          |
| Under nutrition      | 386 (59.93)        | 192(60.75)                        | 17(60.75)                |
| (<18.50)             |                    |                                   |                          |
| Normal (18.50-24.90) | 184 (28.55)        | 98(31.01)                         | 09(32.14)                |
| Pre obese (25-29.90) | 42 (6.5)           | 18(5.6)                           | 02((7.14)                |
| Obese (>30)          | 32 (4.9)           | 8(2.5)                            | 01(3.57)                 |
| New Case             | 48(7.4)            | 28(8.86)                          | 2(7.15)                  |
| Retreatment Cases    | 596(92.54)         | 288(91.14)                        | 26(92.85                 |
| MDR Pulmonary TB     | 555(86.18)         | 274(86.70)                        | 0                        |
| XDR Pulmonary TB     | 58(9.00)           | 27(8.55)                          | 27(96.43)                |
| MDR Extra            | 30(4.65)           | 14(4.43)                          | 0                        |
| Pulmonary TB         |                    |                                   |                          |
| Cold abscess         | 05 (0.7)           | 2(0.63)                           |                          |
| Pleural effusion     | 16 (2.4)           | 9(2.84)                           |                          |
| Lymphadenitis        | 09 (1.39)          | 3(0.94)                           |                          |
|                      |                    |                                   |                          |

...........


# Table. 4 Demographic Profile of MDR TB and XDR TB Patients

. . . . . . . . . . .

| XDR                | 01(.15) | 01(0.31) | 01(3.57) |
|--------------------|---------|----------|----------|
| Extra Pulmonary TB |         |          |          |
| (Cervical          |         |          |          |
| Lymphadenitis )    |         |          |          |

### \* TB Tuberculosis, MDR Multi Drug Resistant, XDR Extensively Drug Resistant

A total of 316 (49.06%) patients among 644 patients were experienced 480 adverse drug reactions (ADRs) during their treatment under DOTS-plus therapy with mean age 41.7  $\pm$  9.2 years. Maximum 220 (69.60%) patients were belonged to male gender and female were 96 (31.40%). Among 28 patients of XDR Tuberculosis 44 Adverse Drug Reactions were found. (Figure 2, Table 5)



Among 480 ADRs, Gastro Intestinal System 278 (57.91%) was most commonly affected system, 45 (9.37%) ADRs in Nervous System, 40 (8.34%) ADRs of Joint Pain, 36 (7.5%) ADRs in Oto Rhino Vestibular System, 37 (7.70%) ADRs of Hepatitis and 16(3.4%) ADRs of Nephrotoxicity were noted . ADRs reported related to Dermatological System and

Ocular System were 16 (3.4 %) and 12 (2.5%) respectively.

AmongADRs of Gastrointestinal System, nausea &<br/>vomiting 176 (62.58%) was most common, abdominal<br/>pain 66 (23.74%) and diarrhoea was 38 (13.67%).AmongADRsofNervousSystem, Depression<br/>18(40%), Psychosis 10 (22.22%), Peripheral<br/>NeuropathyNeuropathy6 (13.34%) and Suicidal Ideation

2(4.45%) were noted . Among ADRs of Otovestibular system, Ototoxicity 25 (69.45%), Vertigo 6 (16.66%) and Tinnitus 5 (13.88%) were found . Hepatitis as adverse drug reaction seen as 37 (7.7%). Mean value of serum bilirubin  $2.02 \pm 0.55 \text{ mg }\%$ , SGPT (Serum Glutamic Pyruvic Transminase) 281.58  $\pm$  61.31 IU/L and SGOT (Serum Glutamic Oxaloacetic Transminase) 346.68  $\pm$  53.04 IU/L were found where hepatitis reported as ADR...

Among ADRs of Dermatological System itching 9 (56.25%) was most common ADR. Among ocular ADRs blurring of vision 5(41.6%) was most common. In our study 20 (4.16%) cases of adverse drug reaction where permanent discontinuation of offending drugs were done and replacement of culprit drug was done by reserved drug (PAS). (Table 5)

 $_{age}196$ 

 Table
 5: Incidence and Characteristic of Adverse Drug Reactions.

| Adverse Drug      | Incidence    | Incidence  | Duration         | of                          | Suspected Drugs                     | Permanent          |
|-------------------|--------------|------------|------------------|-----------------------------|-------------------------------------|--------------------|
| Reaction (ADR)    | MDR TB +     | XDR TB (%) | treatment        | in                          |                                     | Discontinuation Of |
|                   | XDR TB       | (n=44)     | days             |                             |                                     | Drugs              |
|                   | [n=480] (%)  |            | ( Mean±SD)       |                             |                                     |                    |
| Gastro Intestinal | 278 (57.91)  | 24 (54.55) |                  |                             | Ethionamide/                        |                    |
| System            |              |            |                  |                             | Pyrazinamide/ Ethambutol/           |                    |
| Nausea &          | 174 (62.58 ) | 14 (58.33) | $22\pm17.3$      |                             | PAS, Amoxyclav /                    |                    |
| Vomiting          | 66 (23.74)   | 6 (25)     | $17\pm24$        |                             | Fluroquinolones/                    |                    |
| Abdominal Pain    | 38 (13.67)   | 4 (16.67)  | $26\pm28$        |                             | Clofazimine/Isoniazid <sup>H/</sup> |                    |
| Diarrohea         |              |            |                  |                             |                                     |                    |
| Nervous System    | 45 (9.37)    | 2 (4.54)   | $26~\pm~28$      | 26 ± 28Cycloserine          |                                     | 05                 |
| Depression        | 18 (40)      | 2 (100)    | $47.2\pm26.4$    | $47.2 \pm 26.4$ Ethionamide |                                     |                    |
| Psychosis         | 10 (22.22)   | 0          | $9.42 \pm 2.78$  |                             |                                     | 03                 |
| Insomnia          | 4 (8.89)     | 0          | $9.285{\pm}2.85$ |                             |                                     |                    |
| Headache          | 5 (11.11)    | 0          | $95\pm51.25$     |                             |                                     |                    |
| Peripheral        | 6 (13.34)    | 0          | 55               |                             |                                     |                    |
| Neuropathy        | 2 (4.45)     | 0          |                  |                             |                                     |                    |
| Suicidal Ideation |              |            |                  |                             |                                     | 02                 |
| Joint Pain        | 40 (8.34)    | 0          | $53\pm52$        |                             | Pyrazinamide /                      |                    |
|                   |              |            |                  |                             | Fluroquinolones                     |                    |
| Hepatitis         | 37 (7.70)    | 6 (13.64)  | $24\pm17$        |                             | Pyrazinamide/                       |                    |
|                   |              |            |                  |                             | Ethionamide / PAS/                  |                    |
|                   |              |            |                  |                             | Isoniazid <sup>H</sup>              |                    |

| Otovestibular  | 36(7.5)    | 6 (13.64) | 79.55± 48.9       | Kanamycin/ Capreomycin             |    |
|----------------|------------|-----------|-------------------|------------------------------------|----|
| ADRs           | 25 (69.45) | 6 (100)   | $68.12 \pm 64.04$ |                                    | 13 |
| Ototoxicity    | 6 (16.66)  | 0         | $16.4~\pm~5.6$    |                                    |    |
| Vertigo        | 5 (13.88)  | 0         |                   |                                    |    |
| Tinnitus       |            |           |                   |                                    |    |
| Nephrotoxicity | 16 (3.4)   | 2 (4.54)  | $40\pm12.25$      | Kanamycin/ Capreomycin             |    |
| Dermatological | 16 (3.4)   | 4 (9.09)  | $15.2\pm4.6$      | Pyrazinamide/                      |    |
| ADRs           | 9 (56.25)  | 0         | $47 \pm 13.25$    | Ethambutol/ Isoniazid <sup>H</sup> |    |
| Itching        | 4 (25)     | 4 (100)   | 5.71 ±1.70        | Clofazimine                        |    |
| Skin           | 3 (18.75)  | 0         |                   | Fluroquinolones                    |    |
| Pigmentation   |            |           |                   |                                    |    |
| Skin Rash      |            |           |                   |                                    |    |
| Ocular ADRs    | 12 (2.5)   | 0         | $45\pm12.25$      | Ethambutol,                        |    |
| Blurring of    | 5 (41.66)  | 0         | 28±15.6           |                                    | 02 |
| Vision         | 4 (33.34)  | 0         | $50\pm12.25$      |                                    |    |
| Vision loss    | 3 (25)     |           |                   |                                    |    |
| Diplopia       |            |           |                   |                                    |    |

XDR : Extensively Drug Resistant , PAS: Para-Amino salicylic Acid Out of 480 adverse drug reactions, 366 (76.25%) ADRs were possible, 101 (21.04%) probable and 13 (2.71%) were certain according to causality assessment by WHO criteria. Out of 480 ADRs, 258 ADRs (53.75%) of Grade I, 174 (36.25%) of Grade II, 40 (8.33%) of Grade III and 8(1.67%) of Grade IV Severity by WHO criteria. (Table 6)

# Table. 6: Causality Assessment and Severity Assessment of Adverse Drug Reactions

| S/N | Adverse Drug                | WHO Casualty Assessment |         |          |          | Severity   |         |         |         |
|-----|-----------------------------|-------------------------|---------|----------|----------|------------|---------|---------|---------|
|     | Reaction [ADR]<br>(n = 480) | No. of<br>ADR           | Certain | Probable | Possible | Grade<br>1 | Grade 2 | Grade 3 | Grade 4 |
| 1   | Gastro Intestinal           | 278                     |         |          |          |            |         |         |         |
|     | Nausea & Vomiting           | 174                     | 0       | 63       | 111      | 126        | 33      | 11      | 4       |
|     | Abdominal Pain              | 66                      | 0       | 12       | 54       | 51         | 13      | 2       | 0       |
|     | Diarrhoea                   | 38                      | 0       | 0        | 38       | 21         | 17      | 0       | 0       |
| 2   | Central Nervous<br>System   | 45                      |         |          |          |            |         |         |         |
|     | Depression                  | 18                      | 0       | 0        | 18       | 16         | 2       | 0       | 0       |

|   | Psychosis             | 10 | 0  | 0 | 10 | 4  | 6  | 0  | 0 |
|---|-----------------------|----|----|---|----|----|----|----|---|
|   | Insomnia              | 4  | 0  | 0 | 4  | 0  | 4  | 0  | 0 |
|   | Headache              | 5  | 0  | 0 | 5  | 1  | 4  | 0  | 0 |
|   | Peripheral Neuropathy | 6  | 0  | 2 | 4  | 1  | 3  | 2  | 0 |
|   | Suicidal ideation     | 2  | 1  | 1 | 0  | 0  | 0  | 0  | 2 |
| 3 | Joint Pain            | 40 | 0  | 0 | 40 | 0  | 34 | 6  | 0 |
| 4 | Hepatitis             | 37 | 0  | 8 | 29 | 13 | 21 | 3  | 0 |
| 5 | Otovestibular Adrs    | 36 |    |   |    |    |    |    |   |
|   | Ototoxicity           | 25 | 12 | 7 | 6  | 3  | 8  | 12 | 2 |
|   | Vertigo               | 6  | 0  | 0 | 6  | 4  | 2  | 0  | 0 |
|   | Tinnitus              | 5  | 0  | 0 | 5  | 3  | 2  | 0  | 0 |
| 6 | Nephrotoxicity        | 16 | 0  | 0 | 16 | 6  | 8  | 2  | 0 |
| 7 | Dermatological ADR    | 16 |    |   |    |    |    |    |   |
|   | Itching               | 9  | 0  | 0 | 9  | 4  | 5  | 0  | 0 |
|   | Skin Pigmentation     | 4  | 0  | 4 | 0  | 0  | 3  | 1  | 0 |
|   | Skin Rash             | 3  | 0  | 0 | 3  | 2  | 1  | 0  | 0 |
| 8 | Ophthalmological      | 12 |    |   |    |    |    |    |   |
|   | ADR                   |    |    |   |    |    |    |    |   |
|   | Blurring of Vision    | 5  | 0  | 2 | 3  | 3  | 2  | 0  | 0 |
|   | Diplopia              | 3  | 0  | 0 | 3  | 0  | 3  | 0  | 0 |
|   | Vision loss           | 4  | 0  | 2 | 2  | 0  | 3  | 1  | 0 |

### Discussion

In our study of 644 patients age groups ranged were 10 to 89 years. Maximum number of cases 296 (45.96%) were in age group of 20 to 39 years followed by 216 (35.54%) cases belonged to 40 to 59 age group. The mean age of patients in our study was 37.6 years comparable to previous studies [8]. The percentage of male patients (68.60%) greater than female 202 (31.40%) similar findings were seen our studies [8,9,10].

Mean body weight of patients in our study was 43.10 +8.4 kg and 386 (59.93%) patients belonged to under nutrition, similar finding observed in other studies [8,10]. Out of 644 patients, ADRs were seen in 316 (49.06%) patients similar findings also seen in another studies [11,12].

Total adverse drug reactions (ADRs) in our study were 480, out of 480 ADRs 436 ADRs were seen in MDR TB patients and 44 ADRs were seen in XDR TB patients. Most common system involved in ADRs was gastrointestinal system , out of 480 ADRs 280 (57.91%) were of gastro intestinal system, similar findings found in other studies as well and suspected drugs were Ethionamide, Pyrazinamide, Ethambutol, Para Aminosalicylic Acid (PAS) and Isoniazid (in high dose ) [8,11,12,13,14 ] , most of the Adrs of gastro intestinal system belonged to Grade 1 severity , permanent discontinuation was not done in any cases. Second most common system affected by ADRs was nervous system which accounted for 45 (9.37%). Among ADRs of CNS, there were depression (40%), psychosis (22.22%), peripheral neuropathy (13.34%), headache (11.11%), insomnia (8.89%) and suicidal ideation (2.25%). The common offending drugs were cycloserine, fluroquinolone and ethionamide. Higher rates of psychosis and depression in previous studies in also [13, 15]. All patients with psychosis required replacement of cycloserine with PAS during their psychosis phase afterwards cycloserine was reintroduced with antipsychotic treatment. Two patients who had suicidal ideation cycloserine was permanently discontinued in these patients.

Third most common Adverse drug reaction in our study was joint pain in 8.34%, similar findings were also reported in past [16]. Pyrazinamide and Fluroquinolones and can cause arthralgia. Hepatitis was seen in 37(7.70%) as ADRs , suspected drugs were Pyrazinamide ,Isonazid <sup>H</sup>, Ethionamide, Pyrazinamide ,PAS.

Otovestibular System contributed 36 (7.5%) ADRs among adverse drug reactions. Among 36 adrs ototoxicity were 25(69.45%), Vertigo 6 (16.66%), Tinnitus 5 (13.88%), The suspected drugs were kanamycin and capreomycin. There was very high rate of ototoxicity 41.8% was reported by Tourn et al, could be attributed to higher doses and extended exposure to aminoglycosides[16]. In 11 cases of dose of aminoglycosides were reduced ototoxicity and given alternatively and in 13 cases aminoglycosides were permanently discontinued.

Renal involvement was seen 16 (3.40%) patients in this study which is similar to observation noted in different other studies 2.7% and 2% respectively [11,12] . Renal involvements were seen in the form of borderline derangement of serum creatinine  $(1.95\pm.54 \text{ mg\%})$ , serum urea  $(75.2\pm.16.70)$  which improved in few weeks and none required permanent withdrawal of injection Aminoglycosides . Dermatological ADRs were 16 (3.4%), among dermatological ADRs, itching 9 (56.25%), skin pigmentation 4 (25%) and skin rashes 3 (18.75%), similar observation was found in other studies [8, 10, 11]. Ocular ADRs were 12 (2.5%), among ocular ADRs blurring of vision 5 (41.6%), vision loss 4 (33.34%) and diplopia 3 (25%), similar findings supported by other studies [12].

### Conclusion

In our study adverse drug reactions were found in 316 ((49.06%) patients. Among 480 ADRs, 57.91% of ADRs were of gastro intestinal system (most common ) followed by 9.37% ADRs of nervous system. Out of 480 ADRs, 366 (76.25%) were possible, 101 (21.04%) probable and 13 (2.71%) were certain according to causality assessment by WHO criteria. Out of 480 ADRs, 258 ADRs (53.75%) of Grade I, 174 (36.25%) of Grade II, 40 (8.33%) of Grade III and 8(1.67%) ADRs were of Grade IV Severity. In our study 20 (4.16%) cases of adverse drug reaction where permanent discontinuation of offending drugs were done.

### Limitation

This study did not include those MDR TB and XDRTB patients who have comorbid conditions like diabetes , hypertension and HIV etc and those MDRTB patients who were kept on shorter regimen and those MDR TB with additional resistance patients and XDR TB patients who were started on bedaquiline containing regimen.

Acknowledgement: Dr P.K Shukla (SMO), DOTS Plus Centre ,UP UMS ,Saifai,Etawah,UP.

#### References

- "Global TB Report," World Health Organization, Geneva, 2017.
- Zero TB deaths: Stop TB in my life. TB India: Revised national TB control programme, annual report. Central TB division, Director General of Health Services. 2013. Available from: http://tbcindia.nic.in/WriteReadData/1892s/346740 55.
- Edwards IR, Aronson JK. Adverse drug reactions: Definitions, diagnosis, and management. Lancet. 2000;356(9237):1255-9
- WHO. Safety of Medicines: A Guide to Detecting and Reporting Adverse Drug Reactions. Geneva: World Health Organization; 2002. p. 5-6
- Meyboom RHB, Royer RJ. Causality Classification in Pharmacovigilance Centres in the EuropeanCommunity. Pharmacoepidemiology and Drug Safety 1992; 1:87-97.
- Meyboom RHB. Causal or Casual? The Role of Causality Assessment in Pharmacovigilance. Drug Safety 17(6): 374-389, 1997.
- Edwards IR, Biriell C. Harmonisation in Pharmacovigilance. Drug Safety 10(2): 93-102, 1994.
- Kapadia VK, Tripathi SB. Analysis of 63 patients of MDR TB on DOTS plus regimen: an LG hospital, TB Unit, Ahmadabad experience. Guj Med J. 2013;68 (2):52-7.
- Arora VK, Sarin R, Singla R, Khalid UK, Mathuria K, Singla N, et al. DOTS-Plus for patients with multidrug-resistant tuberculosis in India: early results after three years. Ind J of Che Disea and All Scienc. 2007;49 (2):75.
- 10. Vishakha KK, Sanjay BT. Analysis of 63 patients of MDR TB on DOTS plus regimen: An LG

hospital,TB unit, Ahmadabad experience. Gujarat Med J. 2013;68(2):52-7.

- Singla R, Sarin R, Khalid UK, Mathuria K, Singla N, Jaiswal A, et al. Seven-year DOTS- Plus pilot experience in India: Results, constraints and issues. The International Journal of Tuberculosis and Lung Disease. 2009;13:976-81
- 12. Singh BD, Ghulam H, Kadri SM, Qureshi W, Kamili MA, Singh H et al. Multidrug Resistant and extensively drug resistant tuberculosis in Kashmir, India. J Infect Dev Ctries. 2010;4(1):19-23.
- Shin SS, Pasechnikov AD, Gelmanova IY. Adverse reactions among patients being treated for MDR-TB in Tomsk, Russia. Int J Tuberc Lung Dis. 2007;11:1314-20.
- Joseph, P., Rao Desai, V.B., Mohan, N.S., Fredrick, J.S., Ramachandran, R., Raman, B., *et al.* (2011) Outcome of Standardized Treatment for Patients with MDR-TB from Tamil Nadu, India. Indian Journal of Medical Research, 133, 529-534.
- Furin JJ, Mitnick CD, Shin SS. Occurrence of serious adverse effects in patients receiving community based therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2001;5:648-55.
- Torun T, Gungor G, Ozmen I. Side effects associated with the treatment of multidrug resistant tuberculosis. Int J Tuberc Lung Dis. 2005;9:1373-7.