

## International Journal of Medical Science and Innovative Research (IJMSIR)

**IJMSIR : A Medical Publication Hub**

Available Online at: [www.ijmsir.com](http://www.ijmsir.com)

Volume – 6, Issue – 1, January – 2021 , Page No. : 173 - 178

### To study the comparison of oxygen saturation in preterm and term newborns

<sup>1</sup>Dr. Nayan Kumar, MD Pediatrics, Medical officer, Government of Rajasthan.

<sup>2</sup>Dr. Rishi Sodawat, MD Pediatrics, Medical officer, Government of Rajasthan.

<sup>3</sup>Dr. Satyendra Singh, MD Pediatrics, Medical officer, Government of Rajasthan.

**Corresponding Author:** Dr. Rishi Sodawat, MD Pediatrics, Medical officer, Government of Rajasthan.

**Citation this Article:** Dr. Nayan Kumar, Dr. Rishi Sodawat, Dr. Satyendra Singh, "To study the comparison of oxygen saturation in preterm and term newborns", IJMSIR- January - 2021, Vol – 6, Issue - 1, P. No. 173 – 178.

**Type of Publication:** Original Research Article

**Conflicts of Interest:** Nil

### Abstract

**Background:** There is a paucity of data on comparison of oxygen saturation of healthy preterm and term babies after birth who do not require any resuscitation. Hence, there is a need of defining the reference range for oxygen saturation for healthy preterm newborns in comparison to term infants after birth

**Results:** The median SpO<sub>2</sub> value at 1, 3,7 and 10minutes after birth, respectively, for newborn gestation less than 37weeks (preterm neonates) was 78%(73%-80%), 89%(85%-91%), 95%(94%-96%) and 96% (95%-97%). The median SpO<sub>2</sub> value at 1, 3,7, and 10 minutes afterbirth born at, respectively, for newborns born at gestation more than or equal to 37 weeks (term neonates) was 80% (75%-82%), 90%(85%-92%) , 96%(95%-97%) and 96%(96%-97%). There is a statistically significant difference in SpO<sub>2</sub> Values in the two groups (p value < 0.05). Thereby that SpO<sub>2</sub> values were significantly lower in healthy preterm babies than healthy term babies.

**Conclusion:** There is a statistically significant difference in SpO<sub>2</sub> Values at 1 to 10 minutes after birth in preterm and term neonates (p ≤ 0.05), the values

being lower in preterm neonates as compared to term neonates.

**Keywords:** SpO<sub>2</sub>, Term, Pre-term

### Introduction

All neonates are cyanotic at birth, the arterial oxygen tension in the normal foetuses approximately 20mmHg, equivalent to an oxygen saturation of 60%.<sup>1</sup> During the first few minutes of life. oxygen saturation (Saturation by pulseoximetry, SpO<sub>2</sub>) increases from intrapartum levels of 30-40%. Several small studies using pulse oximetry in the delivery room have documented that it takes more than 5 minutes for a new born undergoing normal postnatal transition to attain an oxygen saturation more than 80%<sup>2,3</sup> and almost 10 minutes to reach 90%.<sup>4,5</sup> American experts Leone and Finer<sup>6</sup> advocate a target "SpO<sub>2</sub> of 85 to 90 % by three minutes after birth for all infants except in special circumstances" e.g. diaphragmatic hernia or cyanotic congenital heartdisease.

Healthy newborns have relatively low oxygen saturation in the first few minutes of life. Blood oxygen concentration, measured by pulse oximetry, often is used to determine the need of neonatal resuscitation.<sup>3</sup>

International Surveys show that oximetry is increasingly used during neonatal resuscitation.<sup>7</sup> Various studies have found that SpO<sub>2</sub> in the first 5 minutes of life is much lower in babies delivered by caesarean section when compared to those delivered vaginally.<sup>8</sup>

### Material and methods

**Source of data:** This prospective observational study was done on neonates born in J L N Medical College, Ajmer under the care of Division of neonatology, Department of Pediatrics at J L N Medical College, Ajmer. The resuscitation room was equipped with all necessary equipments required for neonatal resuscitation. SpO<sub>2</sub> data were gathered from 200 healthy, preterm and term newborns.

#### Method of collection of data

#### Inclusion criteria

All healthy, preterm and term newborns delivered vaginally or by caesarean section under the care of

division of neonatology of Department of Pediatrics, J L N Medical College, Ajmer.

Newborns who were active, with good respiratory effort and heart rate; not requiring any resuscitation or supplemental oxygen were included in the study.

#### Exclusion criteria

- Any neonate that showed sign of distress, Including persistent central cyanosis, apnea, gasping, or bradycardia, which required supplemental oxygen, assisted ventilation , or resuscitation in the first few minutes after birth.
- Congenital anomalies that might interfere with normal transition to extra uterine life.

**Study Design:** This was a prospective, observational study.

**Methods:** This study was conducted in the labour room of a tertiary care hospital and a total of 200 babies fulfilling the inclusion criteria were enrolled.

#### Results

Table 1: Comparison of SpO<sub>2</sub> Values At 1 To 10 Minutes After Birth According To Gender Of Newborn (n=200)

| Time   | SpO <sub>2</sub> (%) |            | Z      | P value |
|--------|----------------------|------------|--------|---------|
|        | F                    | M          |        |         |
| 1 min  | 78(74-81)            | 78 (74-82) | -1.384 | 0.166   |
| 2 min  | 84 (79-86)           | 83 (80-86) | -0.587 | 0.557   |
| 3 min  | 89 (85-92)           | 89 (84-91) | -1.000 | 0.318   |
| 4 min  | 92 (89-94)           | 92 (89-94) | -0.761 | 0.446   |
| 5 min  | 94 (92-95)           | 94 (91-95) | -1.312 | 0.190   |
| 6 min  | 95 (94-96)           | 95 (93-96) | -0.532 | 0.594   |
| 7 min  | 95 (94-96)           | 95 (94-96) | -0.830 | 0.407   |
| 8 min  | 96 (94-97)           | 96 (95-97) | -1.643 | 0.100   |
| 9 min  | 96 (95-97)           | 96 (95-97) | -0.346 | 0.729   |
| 10 min | 96 (95-97)           | 96 (95-97) | -0.005 | 0.996   |

Table 1 shows Comparison of SpO<sub>2</sub> Values at 1 to 10 Minutes after birth for female and male newborns. The

mean SpO<sub>2</sub> value at 1, 5, and 10 minutes after birth, respectively, for female newborns was 78% (74%-

81%), 94%(92%- 95%) and 96% (95%-97%). The mean SpO<sub>2</sub> value at 1, 5, and 10 minutes after birth, respectively for male newborns was 78%(74%-82%), 94% (91%-95%) and 96% (95%-97%). The difference

between the SpO<sub>2</sub> values at 1 to 10 minutes attained by female and male newborns was statistically insignificant (p value>0.05).

Table 2: Apgar score at 1 and 5 Minutes after Birth in Different Gestations (n=200)

| APGAR Score | Gestation Weeks | N   | Mean | SD   | 95% Confidence interval for Mean |             |
|-------------|-----------------|-----|------|------|----------------------------------|-------------|
|             |                 |     |      |      | Lower Bound                      | Upper Bound |
| 1 min       | < 34            | 31  | 7.94 | .442 | 7.77                             | 8.10        |
|             | 34-(36+6)       | 66  | 8.08 | .563 | 7.94                             | 8.21        |
|             | ≥ 37            | 103 | 8.31 | .657 | 8.18                             | 8.44        |
|             | Total           | 200 | 8.18 | .613 | 8.09                             | 8.26        |
| 5 min       | < 34            | 31  | 8.81 | .402 | 8.66                             | 8.95        |
|             | 34-(36+6)       | 66  | 9.17 | .543 | 9.03                             | 9.30        |
|             | ≥ 37            | 103 | 9.50 | .558 | 9.40                             | 9.61        |
|             | Total           | 200 | 9.29 | .588 | 9.20                             | 9.37        |

Table 2 shows Mean APGAR at 1 and 5 minutes for newborns with gestation less than 34 weeks was  $7.9 \pm 0.4$  and  $8.8 \pm 0.4$  respectively. The mean Apgar values at 1 and 5 minutes for newborns with gestation 34 weeks to 36+6 weeks (late preterm

neonates) was  $8.0 \pm 0.5$  and  $9.1 \pm 0.5$  respectively. The mean Apgar values at 1 and 5 minutes for newborns with gestation more than 37 weeks (term neonates) was  $8.3 \pm 0.6$  and  $9.5 \pm 0.5$ .

Table 3: Comparison of Apgar score at 1 And 5 Minutes after Birth in Different Gestations (n=200)

| ANOVA    |                |               |     |             |        |       |
|----------|----------------|---------------|-----|-------------|--------|-------|
| APGAR AT |                | Sum of Square | df  | Mean Square | F      | Sig   |
| 1 min    | Between groups | 4.325         | 2   | 2.162       | 6.038  | 0.003 |
|          | Within Groups  | 70.550        | 197 | 0.358       | -      | -     |
|          | Total          | 74.875        | 199 | -           | -      | -     |
| 5 min    | Between groups | 13.002        | 2   | 6.501       | 22.971 | 0.000 |
|          | Within Groups  | 55.753        | 197 | 0.283       | -      | -     |
|          | Total          | 68.755        | 199 | -           | -      | -     |

Table 3 shows comparison of APGAR score at 1 and 5 minutes after birth for newborns born at gestation <34 weeks, 34-(36+6) weeks and >37 weeks. Mean APGAR score in healthy preterm babies was

significantly lower than the healthy term babies. (p value <0.05).

Table 4: Comparison Of  $\text{SpO}_2$  values At 1 To 10 Minutes After Birth In Preterm And Term Babies (n=200)

| Delivery Type | Gestational Age Group |           | Z      | P value |
|---------------|-----------------------|-----------|--------|---------|
|               | < 37                  | $\geq 37$ |        |         |
| 1 min         | 78(73-80)             | 80(75-82) | -3.123 | 0.002   |
| 2 min         | 83(80-86)             | 84(80-88) | -1.907 | 0.057   |
| 3 min         | 89(85-91)             | 90(85-92) | -2.334 | 0.020   |
| 4 min         | 91(89-93)             | 92(89-94) | -1.367 | 0.172   |
| 5 min         | 94(92-95)             | 94(92-96) | -1.980 | 0.049   |
| 6 min         | 95(93-96)             | 95(94-96) | -2.055 | 0.040   |
| 7 min         | 95(94-96)             | 96(95-97) | -2.566 | 0.010   |
| 8 min         | 95(95-97)             | 96(95-97) | -2.640 | 0.008   |
| 9 min         | 96(95-97)             | 96(95-98) | -1.793 | 0.073   |
| 10 min        | 96(95-97)             | 96(96-97) | -2.941 | 0.003   |

Table 4 shows comparison of  $\text{SpO}_2$  Values at 1 to 10 Minutes after birth in preterm and term newborns. The median  $\text{SpO}_2$  value at 1, 3, 7, and 10 minutes after birth, respectively, for newborns gestation less than 37 weeks (preterm neonates) was 78% (73%-80%), 89% (85%-91%), 95% (94%-96%) and 96% (95%-97%). The median  $\text{SpO}_2$  value at 1, 3, 7, and 10 minutes after birth born at, respectively, for newborns born at gestation

more than or equal to 37 weeks (term neonates) was 80% (75%-82%), 90% (85%-92%), 96% (95%-97%) and 96% (96%-97%). There is a statistically significant difference in  $\text{SpO}_2$  Values in the two groups (p value < 0.05). Thereby that  $\text{SpO}_2$  values were significantly lower in healthy preterm babies than healthy term babies.

Table 5:  $\text{SpO}_2$  Percentiles for All Newborns Not Requiring Any Resuscitation at Birth (n=200)

| Percentiles      | 1 min | 2 min | 3 min | 4 min | 5 min | 6 min | 7 min | 8 min | 9 min | 10 min |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| 3 <sup>rd</sup>  | 62.06 | 69.03 | 74.00 | 80.00 | 84.00 | 89.00 | 91.00 | 92.00 | 93.00 | 93.00  |
| 10 <sup>th</sup> | 68.00 | 75.10 | 80.10 | 85.00 | 89.00 | 91.00 | 92.00 | 94.00 | 94.00 | 94.00  |
| 25 <sup>th</sup> | 74.00 | 80.00 | 85.00 | 89.00 | 92.00 | 93.00 | 94.00 | 95.00 | 95.00 | 95.00  |
| 50 <sup>th</sup> | 78.00 | 83.50 | 89.00 | 92.00 | 94.00 | 95.00 | 96.00 | 96.00 | 96.00 | 96.00  |
| 75 <sup>th</sup> | 82.00 | 86.00 | 91.00 | 94.00 | 95.00 | 96.00 | 96.00 | 97.00 | 97.00 | 97.00  |
| 90 <sup>th</sup> | 84.00 | 89.00 | 93.00 | 95.00 | 96.00 | 97.00 | 98.00 | 98.00 | 98.00 | 98.00  |
| 97 <sup>th</sup> | 89.00 | 92.00 | 94.97 | 96.00 | 98.00 | 98.00 | 98.00 | 98.00 | 99.00 | 99.00  |

Table 5 shows the Third, 10th, 25th, 50th, 75th, 90th, and 97th SpO<sub>2</sub> percentiles for newborns not requiring any resuscitation at birth. At 1 minute, the 3rd, 10th, 50th, 90th, and 97th percentiles were 62%, 68%, 78%, 84%, and 89% respectively; at 2 minutes, 69%,

## Discussion

This study reports the changes in preductal SpO<sub>2</sub> during the first 10 minutes after birth in 200 healthy preterm and term infants. To avoid bias and to acquire corrective data in the measurement of SpO<sub>2</sub> in the first 10 minutes after birth in a safe and accurate manner. We used pulseoximeter calibrated for its higher

75%, 83%, 89%, and 92% and at 5 minutes, 84%, 89%, 94%, 96%, and 98%. At 10 minutes the 3rd, 10th, 50th, 90th and 97th percentiles were 93%, 94%, 96%, 98% and 99% respectively.

sensitivity and accuracy for each minute. With this method, the preductal SpO<sub>2</sub>, which is considerably higher than postductal SpO<sub>2</sub>, could be recorded rapidly following delivery. Thus, we optimized our data so that they were least likely to be affected by artifacts.

| The present Study |                     |                    |                 |
|-------------------|---------------------|--------------------|-----------------|
|                   | NRP guidelines 2017 | PRETERM < 37 weeks | TERM ≥ 37 weeks |
| 1 min             | 60-65%              | 73-80%             | 75-82%          |
| 2 min             | 65-70%              | 80-86%             | 80-88%          |
| 3 min             | 70-75%              | 85-91%             | 85-92%          |
| 4 min             | 75-80%              | 89-93%             | 89-94%          |
| 5 min             | 80-85%              | 92-95%             | 92-96%          |
| 10 min            | 85-95%              | 95-97%             | 96-97%          |

The SpO<sub>2</sub> ranges for term newborns at each minute in our study were wider than those specified in the guidelines. These results supported the data presented by Dawson et al.<sup>8</sup> Furthermore, for a more accurate comparison, we constructed a tenth percentile for SpO<sub>2</sub> values to assess the accuracy of the lowest limits<sup>9</sup>; our data demonstrated that the 10th percentiles for SpO<sub>2</sub> at each minute after birth were considerably higher than the lowest limits of SpO<sub>2</sub> specified in the guidelines for the first 10 minutes.

SpO<sub>2</sub> measurements should not be used in isolation when making decisions about oxygen administration. Instead SpO<sub>2</sub> should be part of a constellation of clinical signs including: heart rate, respiratory effort and tone

used to determine management. The NRP textbooks recommends adjusting the oxygen concentration from the blender either up or down to achieve an oxyhemoglobin concentration that gradually increases towards 90%. During the first few minutes, saturations of 70 to 80% may be acceptable as long as the heart rate is increasing.<sup>10</sup> Deciding the right centile or SpO<sub>2</sub> to use to guide oxygen administration is a fine balance between giving oxygen to those infants who need it and not giving it to those who don't. Our aim is to prevent hypoxaemia and hyperoxia and hence the complications associated with hyperoxia and hypoxemia because both are dangerous and can produce fatal complications.

## Conclusion

There is a statistically significant difference in  $\text{SpO}_2$  values at 1 to 10 minutes after birth in preterm and term neonates ( $p \leq 0.05$ ), the values being lower in preterm neonates as compared to term neonates.

## References

1. East CE, Colditz PB, Begg LM, Brennecke SP. Update on intrapartum fetal pulse oximetry. *Aust N Z J Obstet Gynaecol*. 2002;42(2):119-24.
2. Carrasco M, Martell M, Estol PC. Oronasopharyngeal suction at birth: effects on arterial oxygen saturation. *J Pediatr*. 1997;130:832-4.
3. Dimich I, Singh PP, Adell A, Hendlir M, Sonnenklar N, Jhaveri M. Evaluation of oxygen saturation monitoring by pulse oximetry in neonates in the delivery system. *Can J Anaesth*. 1991;38(8):985-8.
4. Porter KB. Evaluation of arterial oxygen saturation of the newborn in the labor and delivery suite. *J Perinatal*. 1987;4(4):7-337-9.
5. House JT, Schultetus RR, Gravenstein N. Continues neonatal evaluation in the delivery room by pulse oximetry. *J Clin Monit*. 1987;3:96-100.
6. Leone TA, Rich W, Finer NN. A survey of delivery room resuscitation practices in the United States. *Pediatrics*. 2006;117(2):e164-75.
7. Lriondo M, Thia M, Buro E, Salguero E, Aguayo J, vento M, et al. A survey of neonatal resuscitation in Spain: Gaps between guidelines and practice. *Acta Paediatrica*. 2009;98:786-91.
8. Dawson JA, Kamlin CO, Vento M, Wong C, Cole TJ, Donath SM, et al. defining the reference range for oxygen saturation for infants after birth. *Pediatrics*. 2010; 125(6):e1340-7.
9. Spector LG, Klebanoff MA, Feusner JH, Georgieff MK, Ross JA. Childhood cancer following neonatal oxygen supplementation. *J Pediatr*. 2005;147 (1) 27-31.
10. Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, et al. Part 13: Neonatal Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. *Circulation*. 2015; 132:5543-60.